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The velocity distribution function of granular gases in the homogeneous cooling state as well as some heated
granular gases decays for large velocities as f �exp�−const�v�. That is, its high-energy tail is overpopulated
as compared with the Maxwell distribution. At the present time, there is no theory to describe the influence of
the tail on the kinetic characteristics of granular gases. We develop an approach to quantify the overpopulated
tail and analyze its impact on granular gas properties, in particular on the cooling coefficient. We observe and
explain anomalously slow relaxation of the velocity distribution function to its steady state.
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When a homogeneous granular gas evolves in the absence
of external forces, it develops a velocity distribution similar
to that of a molecular gas; however, its temperature decays
due to the dissipative nature of particle collisions. The veloc-
ity distribution function of granular gases has attracted much
scientific attention since it deviates characteristically from
the Maxwell distribution. There are two types of deviations.
First, there are deviations from the Maxwellian in the main
part of the distribution �1,2�, where the particle velocities are
close to the thermal velocity vT�t�=�2T �unit particle mass is
assumed�. Second, the high-energy part, v�vT, deviates in
its functional form, i.e., the distribution function decays as
f �exp�−const�v� �2,3�, instead of f �exp�−const�v2� as
expected for the Maxwell distribution. Heated granular gases
with a Gaussian thermostat are equivalent to gases in the
homogeneous cooling state �HCS� �4�. That is, the addressed
properties apply for a wide class of granular gases. Figure 1
shows the velocity distribution function and its deviation
from the Maxwellian �details see below�.

Both types of deviations are characterized by the coeffi-
cient of restitution � describing the postcollision particle ve-
locities v�1� and v�2� as functions of the precollision velocities,

v�1/2� = v�1/2 � ��1 + ��/2��v�12 · e��e� �1�

with v�12�v�1−v�2 and the unit vector e� ��r�1−r�2� / �r�1−r�2� at
the moment of the collision.

In the HCS, the velocity distribution f�v� ,�� �where the
time � is measured in the average number of collisions per
particle� can be reduced to a time-independent distribution

function f̃�c�� by the transformation

f�v� ,�� = �n/vT
3���� f̃�c��, c� � v�/vT��� , �2�

with Haff’s law �5� for the temperature evolution,

dT/d� = − 2�T, i.e., T��� = T�0�exp�− 2��� . �3�

The main part of the distribution function, c�1, can be
described with good accuracy by a second-order Sonine
polynomial expansion around the Maxwell distribution
	�c��
−3/2exp�−c2�:

f̃�c� = 	�c��1 + a1S1�c2� + a2S2�c2� + ¯ � . �4�

It can be shown that a1=0; therefore, the leading deviations
from the Maxwell distribution are due to the second Sonine
polynomial S2�c2�=c4 /2−5c2 /2+15/8 and the respective
coefficient a2 �1,2,6�:

a2 = 16�1 − ���1 − 2�2�/�81 − 17� + 30�2�1 − ��� . �5�

The good agreement of Eq. �4� with simulation data in the
region c�1 can be seen in Fig. 1 �top�.

For c�1, Eq. �4� fails to represent the velocity distribu-
tion function due to its different functional form. It has been
shown that for particles with high velocities the distribution
function develops an exponential tail �2,3�,

f̃�c� = Be−bc, b = 3
/�2, �2 = �2
�1 − �2��1 + 3
16a2� ,

�6�

which is illustrated in the bottom part of Fig. 1; here �2 is the
second moment of the collision integral; see, e.g., �7�.

The overpopulation of the tail is a rather general feature
of granular gases: After being theoretically predicted �3�, it
was found for gases in the HCS also numerically �8,9� as
well as for driven gases, and was also detected experimen-
tally; e.g., �10–14�. In spite of its obvious importance, still it
lacks a theoretical description that allows one to quantify its
impact on granular gas properties. Indeed, neither the nu-
merical prefactor B in Eq. �6� nor the threshold velocity
above which the tail is overpopulated is known. In the
present Brief Report we address this problem numerically
and analytically. We develop an approach to quantify the
high-energy tail and estimate its impact on gas properties.
The impact of the tail on the cooling rate is studied in detail.

We perform direct simulation Monte Carlo �DSMC�
�15–17� of N=108 granular particles. The DSMC method is
particularly suited to simulate large systems over long times
in the HCS, that is, to suppress spatial correlations which
give rise to vortices �18� and clusters �19�. We started at
T�0�=1 and simulated until the particle velocities ap-
proached the double-precision number representation, i.e.,
until T	10−23. For �=0.9 this corresponds to a total of 5
�1010 collisions or 1000 collisions per particle. Neglecting
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the first 2�109 collisions, after each 108 collisions �two col-
lisions per particle� we recorded a snapshot of the scaled

velocities c. The distribution function f̃�c� was then obtained
by binning of up to 100 of such snapshots in 100 intervals.

The numerical values of the constants B and b were then
determined by performing a least-mean-square fit of the lin-
ear function B�−bc, where B�=log B. To find the numerical
value of the threshold velocity where the tail starts, c*
�see the discussion below� we discriminate between two
cases. For the first case, where the functions B exp�−bc� and

f̃�c� according to the Sonine expansion Eqs. �4�, �5� intersect,
we determine c* as the mean of the two intersection points;
these were very close to each other in all our simulations.
For the second case, where the functions do not intersect, c*
was determined as the scaled velocity that minimizes the
distance between both functions. Such simulations were per-
formed for �=0.1,0.2, . . . ,0.9.

In Fig. 2 the numerical results for the slope b are com-
pared with the theoretical prediction, Eq. �6�. For ��0.7 we
find good agreement, whereas for larger � the data deviate.
This can be understood from the theoretical argument used to

derive f̃�c��exp�−bc� �3,20�. For c→
 the gain term of the
Boltzmann equation may be neglected as compared with the
loss term. The larger the restitution coefficient �, the later the
tail starts. In contrast, for molecular gases where �=1, the

gain and loss terms balance each other for all velocities,

leading to the Maxwell distribution f̃�c��exp�−c2�. The de-
viation for ��0.7 originates from the fact that the gain term
cannot be neglected for large � for the accessible interval of
velocities.

To obtain the threshold velocity c* analytically we assume
that f�c� may be sufficiently well described by a combination
of Eq. �4�, valid for c�1, and Eq. �6� for the tail,

f̃�c� = Ac2e−c2
�1 + a2S2�c2����c* − c� + Bc2e−bc��c − c*� ,

�7�

with the Heaviside function ��x�, i.e., we disregard the tran-
sient region �20� between the near-Maxwellian and exponen-
tial parts of the distribution. Using the DSMC method we
checked the ansatz �7�, whose eligibility is illustrated in Fig.
1 for �=0.3. The unknown parameters A, B, and the thresh-
old velocity c* may be found from the normalization condi-
tion and continuity of the distribution function itself and its
first derivative

f̃�c* + 0� = f̃�c* − 0�, f̃��c* + 0� = f̃��c* − 0� , �8�

where f̃�=df̃ /dc. From normalization it follows that

c* = b/2 + a2�2c*
3 − 5c*�/2�1 + a2S2�c*

2�� , �9�

A−1 = �k�c*�/b3� �2 + bc*�2 + bc*��e−bc* + ��
/4� erf�c*�

− 1
8c*�4 + a2c*

2�2c*
2 − 5��e−c*

2
, �10�

B = Ak�c*� , �11�

with

k�c*� � e−c*
2+bc*�1 + a2S2�c*

2�� . �12�

Solving the fifth-order equation �9� numerically for c*, we
obtain A, k, and finally B �Fig. 3�.

The very good agreement between simulations and the
theoretical predictions for the coefficients A���, B��� and the
transition velocity c*��� manifests the adequacy of the ansatz
�7�. The deviation for ��0.7 occurs already for the slope b
of the exponential tail �Fig. 2�, and is not related to the
ansatz. It may be explained similarly as the deviation of b
from its theoretical value: For large ��0.7 the system of
N=108 particles is not large enough to develop a
well-detectable exponential tail.

FIG. 1. Velocity distribution function of a granular gas f̃�c�� as
normal and logarithmic plot. The symbols show a simulation of N

=108 particles for �=0.3. For c�1, f̃�c�� is well described by the
second-order Sonine expansion Eq. �4� �top�. For comparison the
Maxwell distribution is also shown. For c�1 the distribution func-
tion decays exponentially slowly �bottom� �see Eq. �6��. The tail
starts at c	c*, Eq. �9�.

FIG. 2. The slope b of the exponential tail. For ��0.7 we find
good agreement of the DSMC results with the theoretical expres-
sion given in Eq. �6� �full line�. For smaller dissipation the data
deviate �see text�.
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Knowing the distribution function Eq. �7� and its param-
eters A, B, and c* as functions of �, we can quantify the
impact of the exponential tail on kinetic quantities. In this
Brief Report we focus on the temperature decay rate �; for
the diffusion coefficient, and other transport coefficients as
well as for technical details we refer to �23�.

The standard analysis �e.g., �2,7�� yields for the tempera-
ture decay rate, when the stationary velocity distribution is
achieved

� = �1 − �2�J2/12J0, �13�

where

Jk =
 dc�1dc�2
 de� ��− c�12 · e���c�12 · e��k+1 f̃�c1� f̃�c2� .

�14�

Disregarding the exponential tail, the energy decay rate
reduces to �2�

�0��� = �1 − �2�/6�1 + �3/16�a2����/�1 − �1/16�a2���� .

�15�

We applied the DSMC simulation of 108 particles for differ-
ent � and recorded the temperature TDSMC���. Then �DSMC

was determined by fitting TDSMC��� for ��1 to its
asymptotic law, TDSMC�exp�−2�DSMC�� �Eq. �3��. Figure 4
�inset� shows �DSMC��� �points� together with the analytical
result, �0���, Eq. �15� �line�. In this representation we hardly
see any discrepancy between theoretical and numerical data.
The difference between these curves �main part of Fig. 4�,
which quantifies the impact of the overpopulated tail on the
cooling rate reveals, however, a clear dependence on �. The
scaling law �0−�DSMC�exp�−6��, shown here only as a nu-
merical result, is, however, difficult to confirm analytically:

In spite of the simple functional form of f̃�c�, Eq. �7�, an
accurate analytical expression for the cooling coefficient may
be obtained only in the limit ��1 �23�. As follows from the
discussion below, the studied system of N=108 particles is
not sufficiently large to analyze this limit by numerical
simulations.

So far, the discussion refers to the state when the velocity

distribution f̃�c� has relaxed to its stationary form. Now we
ask the question, how fast does this happen? To address this
problem we initialize the particle velocities according to a
Maxwell distribution at T�0�=1 and investigate the decay of
temperature as a function of the average number of colli-
sions, �. Asymptotically, i.e., when the gas has adopted its
asymptotic distribution, the temperature evolves according to
Haff’s law, Eq. �3�. Thus, the time lag that is needed for a
system to reach Haff’s evolution corresponds to the relax-
ation time of the distribution function to achieve its station-

ary form f̃�c�.
Using the coefficient �DSMC described above, we define

the temperature Tfit����exp�−2�DSMC��. By definition, for
��1 we have TDSMC	Tfit since �DSMC was determined as
the best exponential fit to TDSMC��� for ��1. Therefore, the
quantity 1−TDSMC��� /Tfit��� characterizes the relaxation of
the distribution function to its stationary form. Figure 5
shows the relaxation for different values of the coefficient of
restitution. We note that, depending on �, the relaxation to
the level of “natural” fluctuations in the system takes ap-
proximately 20–30 collisions per particle. This slow relax-
ation is very different from that in a molecular gas, where it
takes very few �3–5� collision per particle to develop the
Maxwell distribution. Similar slow relaxation of the high-

FIG. 3. The threshold velocity c* and the parameter B as ob-
tained from DSMC calculations �symbols� together with the solu-
tion of Eqs. �9� and �11�. Again, for ��0.7 we find good
agreement.

FIG. 4. Inset: The temperature relaxation coefficient ���� over �
as obtained by DSMC simulation, �DSMC, �points� and due to Eq.
�15�, �0. The logarithmic plot shows ��0−�DSMC�, that is, the influ-
ence of the exponential tail on the cooling coefficient. The dashed
line shows the best exponential fit.

FIG. 5. Relaxation of the temperature decay to Haff’s law for
N=108 and �=0.3,0.4,0.6, characterizing the relaxation of the dis-
tribution function to its stationary form.
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energy tail of the velocity distribution was reported for a gas
of elastic hard spheres �21�. The relaxation mechanism for
the case of granular gases is, however, completely different
and depends on �: While the tail in elastic gases is fed by the
gain term of the Boltzmann equation, for the dissipative
gases this term is negligible. The formation of the tail for the
latter case occurs exclusively due to permanent cooling of
the gas, so that the scaled velocity of a particle, c� �v� /vT,
increases due to decaying vT. By this mechanism particles
enter the tail and keep it overpopulated.

The relaxation time, i.e., the time of formation of the ex-
ponential tail, may be quantified. The relaxation to the sta-

tionary distribution f̃�c� is described by �7,22�

��2/3��3 + c � /�c� f̃�c,�� + J0��/��� f̃�c,�� = Ĩ� f̃ , f̃� �16�

where Ĩ� f̃ , f̃� is the reduced collision integral �e.g., �7�� and
J0 is defined in Eq. �14�. Neglecting the incoming term for
c�1 �2–4�, the collision integral may be approximated by

Ĩ� f̃ , f̃� 	 − 
cf̃�c�, c � 1. �17�

Using the ansatz f̃�c ,��=B exp�−w���c�, we recast Eq. �16�
into

dw/d� + ��2/3J0�w = 
/J0, c � 1, �18�

with the solution

w��� = b + �1 − b�exp�− �/�0���� , �19�

where b=3
 /�2 coincides with Eq. �6� and �0
−1���=�2 /3J0.

Neglecting a2, which characterizes small deformations of the
main part of the distribution with respect to the Maxwellian,
and the contribution from the tail, we obtain J0=2�2
 and
hence

�0
−1��� = �1 − �2�/6 �20�

�see �23� for details�. For �=0.4 we obtain the relaxation
time, �0	7.1.

Let us compare the theoretical prediction Eq. �20� with
the numerical results. The relaxation of �1−TDSMC/Tfit� as
plotted in Fig. 5 reveals two stages. First, for ��10, we
observe relaxation of the main part of the velocity distribu-
tion, where c	1. The initial Maxwell distribution relaxes
here to the distribution given by the Sonine expansion Eq.
�4�. During the second stage the overpopulated tail is
formed; the plotted quantity decreases for �=0.4 by a factor
of 10 in the time span ��=25 ranging from �=10 to 35. This
leads to a numerical relaxation time �0=25/ log 10	10.8, in
agreement with the above theoretical estimates.

The theory also predicts that the relaxation time increases
with increasing �. While this tendency is confirmed for �
=0.3 and 0.4, it is seemingly violated for �=0.6 �see Fig. 5�.
We argue, however, that this is, presumably, a finite-size ef-
fect, which may be understood as follows. According to the
mechanism of the tail formation, discussed above, the gain
term of the collision integral does not contribute to the tail.

Instead, particles enter the tail due to increase of the scaled
velocity c� �v� /vT when the thermal velocity vT decreases
along with temperature T. The temperature decay and hence
the formation of the tail is slower for larger �, that is, the
relaxation time �0 is larger, Eq. �20�.

On the other hand, the total number of particles in the tail
moving at velocities c�c*, decreases with increasing �. Cor-
respondingly, the deviation of the distribution function from

its steady state f̃�c�, quantified here by �1−TDSMC/Tfit�, be-
comes smaller for smaller dissipation. Consequently, the re-
laxation of this quantity may be traced only as long as it
exceeds the level of natural fluctuations. The smaller the sys-
tem, the larger is the impact of the fluctuations. Therefore, if
the number of particles in the tail is not sufficiently large, the
value of �1−TDSMC/Tfit� drops quickly below the fluctuation
level, making an accurate numerical estimate of the relax-
ation time impossible. This is the case for �=0.6 in Fig. 5
where a seemingly fast relaxation is observed due to large
fluctuations. Hence, we conclude that the observed relaxation
curves do not contradict the predictions of the theory. They
indicate, however, that the size of the system of N=108 par-
ticles is not sufficient to study the relaxation of the distribu-
tion function for �=0.6 or larger. For a very large system we
expect increase of the relaxation time �0 with increasing co-
efficient of restitution � in agreement with the theoretical
analysis.

In summary, we investigated the velocity distribution
function of a granular gas and the impact of its overpopu-
lated high-energy tail on the cooling coefficient, which is the
main characteristic of a granular gas in the HCS. We pro-
posed a unified functional form of the distribution function
that comprises its main part �v /vT�c�1� whose deviation
from the Maxwell distribution is described by the second-
order Sonine expansion, and the overpopulated tail, which
decays exponentially. We derived �-dependent coefficients of
the proposed ansatz along with the scaled velocity c*, which
separates the main part of the velocity distribution �c	1�
and the tail part �c�1�. For ��0.7 the analytical results
agree well with large scale DSMC of 108 particles, while the
deviations for ��0.7 may be attributed to finite-size effects.

We analyzed the impact of the overpopulated high-energy
tail on the cooling rate �, which is the main hydrodynamic
coefficient of granular gases in the HCS. We found system-
atic deviations from the theoretical expression which ne-
glects the exponential tail. These deviations grow with in-
creasing dissipation �decreasing �� as exp�−6��, due to
enhanced contributions from the tail.

Finally, we observed and explained theoretically the ex-
traordinarily slow �as compared with molecular gases� relax-
ation of the velocity distribution to its asymptotic stationary
form. It takes about �20–30 collisions per particle and may
be understood from the mechanism of the tail formation.
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